Many times we need to visualize our model on Tensorboard, for this we have to save our model and at runtime check out the performance. Here is the code for a simple linear regression using Keras and tensorboard.

import Libraries:

import keras
import numpy as np
from pandas import read_csv
from keras.models import Sequential
from keras.layers import Dense
from keras.wrappers.scikit_learn import KerasRegressor
from keras.callbacks import TensorBoard

Let’s take two lists of numbers,


Create a neural network Model,

from keras.wrappers.scikit_learn import KerasRegressor

def baseline_model():
    model = Sequential()
    model.add(Dense(13, input_dim=1, kernel_initializer='normal', activation='relu'))
    model.add(Dense(1, kernel_initializer='normal'))
    # Compile model
    model.compile(loss='mean_squared_error', optimizer='adam',metrics=['accuracy'])
    tensorboard = TensorBoard(log_dir="D:\Graph".format(time()))
    return model


Build a regressor model,

from time import time
tensorboard = TensorBoard(log_dir="D:\Graph".format(time()))
estimator = KerasRegressor(build_fn=baseline_model, epochs=110, batch_size=1,verbose=1, callbacks=[tensorboard])


predict a value,

1/1 [==============================] - 0s
array(11.940549850463867, dtype=float32)

Score will be,

score = estimator.score(X, Y)

Now, how can we visualize the model ?. Go to tensorboard….

The visualization will be like this,




Nice Articles for tensorflow:



Leave a Reply

Your email address will not be published. Required fields are marked *