We can define basically three types of tensor:
Constant: It is a tensor which will be constant while a graph run there is no need to initialize it.
Variable: It is a tensor which will be asynchronously assigned and initiated.
Placeholder: It is a tensor which accept value at run time from the feed_dict.
Code for Constant:
import tensorflow as tf a= tf.constant(12) b=tf.constant(13) c=tf.multiply(a,b,name='mul') print(c) sess=tf.Session() b=tf.constant(13) sess.run(c)
Code for Variable:
import tensorflow as tf a=tf.Variable(2) b=tf.Variable(3) c=tf.multiply(a,b,name='mul') b=tf.Variable(3) print(c) sess=tf.Session() b=tf.Variable(5) model=tf.global_variables_initializer() sess.run(model) sess.run(c)
Code of Place Holder: import tensorflow as tf tf.reset_default_graph() a= tf.placeholder(tf.float32,shape=[1]) b=tf.placeholder(tf.float32,shape=[1]) c= tf.multiply(a,b) print(c) sess=tf.Session() #model=tf.global_variables_initializer() #sess.run(model) sess.run(c,feed_dict={a:(2,),b:(9,)})
very informative!
It’s very easy way.. to get learn